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(Raze&d 14 January 1977) 

The problem of basefine interpolation for integration of differential scanning 
calorimetry (DSC) first-order phase transition peaks has heen a subject of interest 

for a number of years*-*_ The method for construction of the baseiine becomes of 

particular importance when the transition enthaIpy (latent heat) is very small and the 
baseline level shift (due to a change! in heat capacity) is large, as is frequently the case 
for axtain liquid erysta1 transitions. Some baseIine construction techniques invoke 
iterative procedures which may prove slow and cumbersome. Others require computer 
analysis_ StiIl others involve assumptions which are admittedly arbitrary. Thus the 
need for a rapid-yet reasonabIy accurate-analytical method for baseline construc- 

tion is apparent This note describes a method possessing the advantages of both 
speed and reproducibility when applied to the determination of enthalpies for 
nematic-isotropic transitions of liquid crystalline materials. 

The method is based on the assumption that the DSC temperature scan rate 
is sufficiently slow that the baseline in the transition region is proportional to the 
following expression for heat capacity’* ‘: 

where X(T) is the fraction of sample converted from phase 1 to phase 2 at temperature 
Tand C,, and C,, are the heat capacities (constant pressure) in phases I and 2, 

If the true baseline is known, X(r) can be calculated from the expression’ 

where g(T) is the magnitude of the DSC signal (measured with rtspect to the txue 
baseline) and Tr and T, are temperatures in phases 1 and 2, far from the transition 
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region. In other words X(T) is equaI to the ratio of the area under the DSC peak 
between temperatures Tr and T, to the total area under the peak, 

It is known that DSC transition peaks are often roughly triangular in shapeg. 
T&n& shape is a second assumption in our derivation of an analytic expression 

for the approximate baseline. In Fig. I, a DSC peak is represented schematically. The 

solid lines represent the best triangular approximation to the true peak shape (dotted 
curve). In the figure T” and Tr are the initial and final temperatures for the transition 

peak as de&mined by extension of the straight line portions of the leading and 
trailing ed_a of the iine shape to their intersfAx -on with the lines C’, and Cp2. the 

baselines extrapolated from well Mow and well above the transition region_ TP is the 
temperature at the maximum of the transition peak; h is the peak height above the 
initial baseline (C,,); LX and ~94~ (Lz and Ma are two segments, the sum of which 
give the altitude of area increment dA ,(dA& and dC, = C,,-C,,_ A first approxima- 
tion to the baseline is given by a straight line joining points (a) and (b) in Fig. 1. A 
second (and usuaIIy sufiieientiy accurate) approximation is then obtained by com- 

puting X(7’) using the first approximation baseline in eqn (2) and substituting in 

eqn (0 
For a straight line approximation to the baseline area increments are given by: 

Integrating equs (3) and (4) gives 
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The total integrated area up tg any temperature such that T _( TP is given by eqn (5)_ 

However, the total inte__erated area up to any temperatire such that T > T, is given by: 

A=TdA,+jdA, 

St TD 

- Ti;;) + ACp(Tp - Ti) - 
h -I- AC, AC,, 
T _ T - T _ T 

r P r 
i] m-n+ 

(TPsTsT,) (7) 

The total integrated area (i-e., over the entire temperature range ri to Tr) is therefore 

.,,TdA,+r dA, = ~ (h(T, - Ti) + AC~T, - Ti)) (8) 

Tl TV 

From eqns (2), (5), (7) and (8) we now calculate X(7’): 

(T- Kj2 

(T, - T,XG - T=- 
(Ti I TI Tp> (9) 

(T,-T12 
(& - Tax - TJ- 

(T, 5 T I T-) 

Conveniently neither eqn (9) nor (IO) contain h or AC,, as a parameter_ 

The’expression for the second approximation to the baseline (from eqns (I), 

(9), and (10) is thus a quadratic: 

CAT) = CP, -I- (TACAT;;T2TJ_ (T, I T I TP) (W 
p--r - 

w-l 
AC,,(T - T,)’ 

= cp2 + (T, - TX% - Ta’ 
(T,sTsT,) 

‘Iht straight Iine first approximation is, of course, given by: 

(12) 



By differentiating cqns (I I)-(13) and comparing the equations and their derivatives 
it is easy to verify the following rckitionsr 

AtT=T,:CXT)=b(l’);+O (14) 

AtT=T,:C~T)sb(T)+ dT 2 db 

ArT=T,rCJT)=b(T’+=O WI 

Tlms it is easy to approximate a true basefine by constructing the straight line baseline 
and then drawing a smooth curve which passes through the straight line at Ti, TP, 
and TI with zero sIope at Ti and Tr and twice the straight line sIope at TP_ 

The two approximate baselines arc shown in Fig. 2, The area difkrences found 
in using the two diEerent baseliqcs arc indicated A 1 and AZ_ Since one is additive and 
the other subtractive, the net a&al error introduced by use of the straight Iine baseline 
is proportional to the differen* of A, and A2 which can be shown to be 

A, -A=== 
ACJ2T, - q - TJ 

6 
(17) 

The error is, of course, zero if AC, = 0 or if TP is halfway between T, and Tr. The 
fractional error is thus: 

A, --A, ACJZT, - Tr - TJ 

A, = 3[h(T, - Ta -I- ACAT, - T1)3 
m 

For a typical nematic to isotropic phase transition AC’ z 0_2h, T,--T, x 1.2K, and 
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G-T, z 0_7K, so that the c&Mated error is 0.016 or l-6%_ Actual measurements 
yielded discrepancies of only I-2% between the two methods. The error is of the 
order of the uncertainty in the use of a pIanimeter, so a straight line baseline seems a 
reasonable approximation to the true baseline. For greater accuracy the second 
approximation can, of course, be used. 

The validity of the method can be tested by determination of transition enthalpies 

for phase changes in which p&morphism and supercooling do not play a role. For 
such transitions, e-g., nematic-isotropic phase changes of liquid crystals, the measured 
transition entbalpies are expected to be independent of temperatnre scan direction. 
We have applied the methods of this note to a number of liquid crystals and find 
excellent reproducibility of results, independent of scan direction (Table 1) We 
conclude therefore that the methods arc usefui for such systems. 
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