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Note

Baseline construction for determination of transition enthalpies
by differential scanning calorimetry

GEORGE W._. SMITH
Physics Department, Research Laboratories, General Motors Corporation, Warren, MI 48090 (U.S.A.)
(Received 14 January 1977)

The problem of baseline interpolation for integration of differential scanning
calorimetry (DSC) first-order phase transition peaks has been a subject of interest
for 2 number of years! ~8. The method for construction of the baseline becomes of
particular importance when the transition enthalpy (latent heat) is very small and the
baseline level shift (due to a change in heat capacity) is large, as is frequently the case
for certain liquid crystal transitions. Some baseline construction techniques involve
iterative procedures which may prove slow and cumbersome. Others require computer
analysis. Still others involve assumptions which are admittedly arbitrary. Thus the
need for a rapid—yet reasonably accurate—analytical method for baseline construc-
tion is apparent. This note describes a method possessing the advantages of both
speed and reproducibility when applied to the determination of enthalpies for
nematic-isotropic transitions of liquid crystalline matenials.

The method is based on the assumption that the DSC temperature scan raie
is sufficiently slow that the baseline in the transition region is proportional to the
following expression for heat capacity®- 2:

CAT) = X(T) C,z + [1 — X(TI1 C,, m

where X(T) is the fraction of sample converted from phase 1 to phase 2 at temperature
T and C,, and C,, are the heat capacities (constant pressure) in phases 1 and 2.
If the true baseline is known, X(T) can be calculated from the expression!
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where g(7) is the magnitude of the DSC signal (measured with respect to the true
baseline) and T, and 7, arc temperatures in phases 1 and 2, far from the transition
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Fig 1. Approximation to DSC lineshape.

region. In other words X(7) is equal to the ratio of the area under the DSC peak
between temperatures 7, and 7, to the total area under the peak.

It is known that DSC transition peaks are often roughly triangular in shape?.
Triangular shape is 2 second assumption in our derivation of an analytic expression
for the approximate baseline. In Fig. 1, a DSC peak is represented schematically. The
solid lines represent the best triangular approximation to the true peak shape (dotted
curve). In the figure T; and T are the initial and final temperatures for the transition
peak as determined by extension of the straight line portions of the leading and
trailing edges of the line shape to their intersection with the lines C,,; and C,,, the
baselines extrapolated from well below and well above the transition region. T, is the
temperature at the maximum of the transition peak; 4 is the peak height above the
initial baseline (C,,); L, and M, (L, and M) are two segments, the sum of which
give the altitude of area increment d4,(d4,), and AC, = C,,-C,,- A first approxima-
tion to the baseline is given by a straight line joining points (a) and (b) in Fig. 1. A
second (and usually sufficiently accurate) approximation is then obtained by com-
puting X(7T) using the first approximation baseline in egn (2) and substituting in
eqn (1).

For a straight line approximation to the baseline area increments are given by:

h ac,

](T— AT, #Z<T=7, 3

h + AC,  4C,
-1, T—-T,

dAz=(Lz+Mz)dT=[ ](Tr—T')dT- L,sT<Th (O

Integrating eqns (3) and (4) gives
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The total integrated area up to any temperature such that T < 7, is given by egn (5).
However, the total integrated area up to any temperature such that T > T, is given by:

Tp T
A= fdA, + fdAz
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The total integrated area (i.e., over the entire temperature range 7T; to T;) is therefore

To

A = f dA; + f dA, = —{h('I} T;) + ACAT, — Ty)} 8)
T| To
From eqns (2), (5), (7) and (8) we now calculate X(7'):
_ Ay (T—-T) \
RO s ¢ A ¢ A 5 el ©
XM= —1- G-T _ (geT<Tp (10)

Ao (T — TXT; — T))

Conveniently neither eqn (9) nor (10) contain & or AC, as a parameter.
The expression for the second approximation to the baseline (from eqns (1),
(9), and (10) is thus a quadratic:

ACAT — T;)*

CAT) = YT =T (TL<T=<T) 11)
_ AC(T - T))*
CD=Cpr+ gy (L=<T<D (12) 

The straight line first approximation is, of course, given by. ,

b = CAT= T = %"T LA | as
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Fig. 2. Area differences in the two approximations.

By differentiating eqns (11){(13) and comparing the equations and their derivatives
it is easy to verify the following relaiions:

2 srE dCD
7 L,

At T = T;: CAT) = AKT); dT=G (14
dC, db

AtT=T,: C(T) = H(T); 3% = 25 15)
dcC,

At T - { T: P =

"!- ) 4 - Sl 4 H\_I’ dT 0 (16)

Thus it is easy to approximate a true baseline by constructing the straight line baseline
and then drawing 2 smooth curve which passes through the straight line at T3, 7,
and 7, with zero slope at T; and T; and twice the straight line slope at 7.

The two approximate baselines are shown in Fig. 2. The area differences found
in using the two different baselines are indicated A, and A,. Since one is additive and
the other subtractive, the net areal error introduced by use of the straight line bascline
is proportional to the difference of A, and A, which can be shown to be

AC,2T, — T; — T)
p = r i (17)

AI_A2=

The error is, of course, zero if 4C, = O or if T, is halfway between T; and 7. The
Iracuonal error is UJI.I.S-

A, — A 4CQRT, - T, —T) I
Awe KT — D+ ACAT, - T o T

For a typical nematic to isotropic phase transition 4C, =~ 0.2k, T,~—T;~ 1.2K,and
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TABLE 1

SCAN DIRECTION INDEPENDENCE OF NEMATIC-ISOTROPIC ENTHALPIES DETERMINED USING PRESENT BASE-
LINE CONSTRUCTION TECHNIQUE

Compound Transition enthalpy (kJ mol-1) Literature
Increasing scan Decreasing scan

cgtigd_ o= dcgu, 0.653 0.636 057
ao-d H-am- H-ocoa, 0.624 0.636
e~ -n=n-d D-ococehns 1.08 1.05
carod Vol o 0.448 0.456

s J. van der Veen, W. H. de Jeu, M. W. M. Wanninkhof and C. A. M. Tienhoven, J. Phys. Chem.,
77 (1973) 2153.

I—T,=~ 07K, so that the calculated error is 0.016 or 1.67/. Actual measurements
yielded discrepancies of only 1-29/ between the two methods. The error is of the
order of the uncertainty in the use of a planimeter, so a straight line baseline seems a
reasonable approximation to the true baseline. For greate: accuracy the second
approximation can, of course, be used.

The validity of the method can be tested by determination of transition enthalpies
for phase changes in which polymorphism and supercooling do not play a role. For
such transitions, e_g_, nematic-isotropic phase changes of liquid crystals, the measured
transition enthalpies are expected to be independent of temperature scan direction.
We have applied the methods of this note to a number of liquid crystals and find
excellent reproducibility of results, independent of scan direction (Table 1). We
conclude therefore that the methods are useful for such systems.
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